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Abstract
With increasing interest in the nonlinear integrable op-

tics, it is important that early experiences with simulating
the lattices be shared to save time and point out potential
difficulties in the simulations. We present here some details
of simulating the nonlinear integrable lattices. We discuss
correctly implementing and testing the elliptic element kicks,
and the limits of the thin lens approximation. We also dis-
cuss generating a properly matched bunch in the transverse
phase space, and how to analyze the resulting computational
data from simulations.

INTRODUCTION
Nonlinear integrable optics [1] is a concept for mitigating

collective instabilities in intense beams. It has generated
considerable interest in the field, and multiple groups and
institutions have begun contributing to the research. Be-
cause of the novel form of the potential, they require special
considerations for beam matching, calculating the kick in a
drift-kick symplectic tracking code, and analyzing the results
of simulations.

At the moment, the nonlinear element is implemented and
benchmarked in Synergia [2], LIFETRAC, PyORBIT [3],
and MAD-X [4] by way of PTC [5]. Please contact the
authors if you plan to implement the nonlinear element in
your tracking code. As the collaboration grows and the
number of implementations expands, it is important to keep
track of updates and changes and compare computational
results. By sharing post-processing scripts and source code,
we hope to minimize the redundant effort required for new
researchers to begin studying nonlinear integrable optics.

MATCHED DISTRIBUTIONS
The Hamiltonian described by eqns. (10) and (18) in the

original paper by Danilov and Nagaitsev [1] is an invariant
of the single-particle motion in a nonlinear integrable lattice.
As is well-known, any distribution which is a pure function
of the invariants is itself an invariant of the motion – it is
a matched beam. Any computational study of a nonlinear
integrable lattice must start with, at the minimum, a beam
properly matched in the transverse direction including the
elliptic potential. Early attempts at simple linear matching
showed severe mismatch in the nonlinear lattice, leading to
large excursions of single particle orbits.
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The Hamiltonian in the normalized coördinates is given
by
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whereU is the normalized elliptic potential given by eqn.
(18) of [1]. Here, the overhat denotes the usual Courant-
Snyder normalization of themomenta and coördinates. Thus,
a function ofH will be matched to a lattice with zero col-
lective effects and zero longitudinal-transverse coupling (i.e.
the zero chromaticity limit).

The generalization of the Kapchinskij-Vladimirskij distri-
bution [6] is a delta function in the generalized emittance
f (ε) = δ(ε − ε0) for a beam where every particle has its
Hamiltonian equal to a single emittance,Hi = ε0. To gener-
ate this delta function distribution, it is convenient to pick
a magnitude of the transverse momentum, p̂0, at random,
limited to the range p̂0 ∈ [0,

√
2ε0). Then, solve for x̂ and ŷ

in the nonlinear equation
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One method of doing this is to pick an angle at random
from θ ∈ [0, 2π) and solve for the radius using a numerical
root finding algorithm. Another method, what we call the
“lemming method”, is to pick random values of x̂ and ŷ from
inside some bounding box and walk the point in x̂ at fixed ŷ

until it solves the origin. Either method should generate a
uniform distribution in the x̂− ŷ plane, filling the isoenergetic
contours in Fig. (1).

To generate a general distribution inH , generate the dis-
tribution as a Riemann sum of delta functions on the desired
distribution function. Thus, f (ε) is a Riemann sum of K-
V distributions. Specifically, consider the unit-normalized
distribution f (ε), such that∫ ∞

0
dε f (ε) = 1 (3)

and a total of N particles. Then on a finite interval from
ε′ − ∆ε/2 to ε′ + ∆ε/2, there will be N f (ε′)∆ε total parti-
cles. If there are Nmacro. macroparticles with weight w, then
there will be Nmacro.w f (ε′) macroparticles with H = ε′.
Thus, a way to generate the arbitrary distribution f (ε), we
can approximate this with a large number of KV distribu-
tions with the proper number of macroparticles in each sub-
distribution.
To invert the generated coördinates to real coördinates,

generate a uniformly random angle θ for the momentum and



Figure 1: Isoenergetic contours for the elliptic potential. A
K-V type distribution will uniformly fill the space inside a
fixed energy contour. Here t = −0.4.

use the inversion of the Courant-Snyder parameterization:
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where here α and β are the Twiss parameters at the point of
observation in the lattice.

COMPUTING THE KICK & INVARIANTS
Implementation and optimization of the kick and invariant

calculations will be language-specific, and therein t and c
are the normalized t and c, not those associated with the
local magnet and Twiss parameters. They are the t that
appears in eqn. (1) above, for example. A Python class
which computes the kick and invariants from un-normalized
coördinates may be found in the GitHub gist in [7]. The API
for this is straightforward, and should be straightforward to
adapt for any language or tracking code.
There will be a distinction between the ideal β(s) in the

elliptic element and the actual β(s) for a lattice with mis-
alignments, powering errors, and other physical effects. In
all computational cases, one presumably scales the elliptic
potential to the ideal β(s), and so that is the one that should
be used in all rescalings. We also note that, for gapped mag-
nets, the numerical (and therefore, presumably, the physical)
behavior is better if the magnet strength is scaled to the beta
function in the middle of the magnet. A complete error
analysis of this is beyond the scope of this proceeding.

The invariants are a critical tool for studying the dynamics
of the beam under perturbations from the ideal lattice. This
includes studying space charge, magnet errors, wake fields,

and on. These invariants represent the ideal system, in the
same way that the linear Courant-Snyder invariants represent
the ideal system for linear strong focusing. Thus, useful
diagnostics include calculating the distribution of H and I
and how it evolves over time in the presence of collective
effects or lattice errors.

CONVERGENCE & VERIFICATION

Tracking single particles across a nonlinear element is
best done using second order drift-kick. In the actual con-
struction of the elliptic magnet, the magnetic elements gen-
erating the elliptic potential will be separated by drifts. To
accurately model this, it is necessary to carry out more than
one drift-kick-drift sequence through the element. A sin-
gle kick across the element, sandwiched between two drifts,
will be indistinguishable to the tracking code from a mag-
net which is the full width of the magnet and gaps. In our
experience, three kicks across a magnet is sufficient to get
quantitative convergence and include the effects of gaps and
magnet widths, while also minimizing the computational
load. Because the kick features a substantial number of func-
tion evaluations, a poorly optimized kick could represent
significant computational time.

To verify that the code has been implemented correctly, we
suggest generating a particle with a fixed invariant using the
method described above. Track the particle through an ideal
ring which should represent double-focusing quadrupoles
surrounding the elliptic element, as described in [1]. Both
invariants should remain close to constant, as seen in Figs. (2)
and (3).
Thus, a check on computing the invariants correctly is

the shape of the potential isoenergetic contours in Fig. (1).
This is particularly sensitive to sign errors and other bugs
and thus the presence of any errors in the calculation of the
Hamiltonian will be obvious. Once the correct computation
of the Hamiltonian is established, carry out the aforemen-
tioned simulations. I and H should both remain close to
constant, and H should be close to the initial value. If H
has been confirmed as being computed correctly, and the
value of H is varying by larger than about 1%, then there
is an error in the calculation of the kick. If H is remaining
well-behaved but I is varying by a large amount, then there
is an error in the calculation of I.

Note the qualitative differences between the invariants in
Fig. (2) and Fig. (3). While both show similar quantitative
variation in the Hamiltonian and the invariant, the three-kick
map shows a much more orderly structure in the variations
of H and, especially, I over time. This may have important
implications for longer term tracking with errors, although
we have not studied these differences quantitatively.

An additional qualitative behavior is the Poincaré surfaces
for a tracking. The single particle orbits tend to trace out an
hourglass shape in the transverse x − y and px − py planes,
as illustrated in Fig. (4).



Figure 2: Invariants for an ideal gapped element with one
kick per nonlinear magnet.

Figure 3: Invariants for an ideal gapped element with three
kicks per nonlinear magnet.

Figure 4: Poincaré sections for the transverse particle dy-
namics.

CONCLUSION
We have here provided documentation on GitHub of how

to compute the kick and the invariants in a nonlinear inte-
grable element, a discussion of heuristics for convergence
for accurate simulations, and steps to verify the correct cal-
culation of the invariant, Hamiltonian, and kick. We have
also described conceptually how to generate a beammatched
to the nonlinear elliptic lattice. We have provided guidelines
from our experience with simulating these lattices, and sug-
gested which diagnostics may prove to be meaningful for
the nonlinear elements.
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